Toward an Automated Vulnerability Comparison
of Open Source IMAP Servers

Chaos Golubitsky (chaos@glassonion.org)

December 7, 2005



Overview
Motivation
Attack surfaces
IMAP server design
Automated attack surface measurement

Results



Why automated vulnerability comparison
e (Goal is to minimize vulnerability of installed software

e But how do we measure future vulnerability?
— Past bugs?
— Reputation?
— Look at the code?

e Useful metric must:

— Be easy to apply

— Give simple and usable results



Why analyse IMAP servers

e Protocol for remote authenticated e-mail access
e Three popular servers: UW, Cyrus, Courier

e Prior vulnerability data is inconclusive:
— Approximately 30 IMAP server vulnerabilities recorded

— Almost all are remote API buffer overflows allowing

arbitrary code execution



Analysis methodology: attack surfaces
Methodology for generating metrics

Two prerequisites for an attack on a system:

— Before attack, attacker must be able to affect the system in

some way

— Attack must increase attacker’s access to the system

Measure system attackability by counting ways to affect the

system

What do attack surface elements look like?



The attack surface of an IMAP server

server machine

L

imapd

-/'% ;H. h h.

™ Files B Neowvork APIs

. Executables




IMAP design choices which affect attackability

e Permissions and authentication:

— Imapd account (Cyrus) vs. root/user (UW, Courier)

e Subset of functionality which is built in:
— Needs external network listener (UW)
— Custom tcpwrappers workalike (Courier)

— Custom procmail workalike (Cyrus)

e How do we rigorously measure the effects of all these choices?



Measuring attackability: using the source

Metric used: a weighted count of the code functions available
through the IMAP network interface

Weighting: not all functions are equally accessible

Access rights:
— Authorization needed to execute the code

— Unauthenticated, anonymous, user, administrator
Privileges:
— Power the operating system gives to the running code

— nobody, user, imapd, root



How to automatically count and classify functions
e Use a code analysis tool to find all reachable functions
e Starting from main(), manually divide code by privilege/access

e Finding privilege/access boundaries:
— Privilege: look for setuid()/setgid() calls

— Access rights: password checks? internal variables?

e Output: set of functions accessible at each privilege/access level



From sets of functions to an attackability value

e Assign a weight to each privilege and access level:

— More privileged functions have higher weight:

* weight(root) > weight(nobody)

— Functions with more access restrictions have higher weight:

* weight(authenticated) > weight(unauthenticated)

e Choose a simple attackability function satistying:
— Higher privilege leads to higher attackability

— Higher access restriction leads to lower attackability

weight(priv(f))
weight (access(f))

Attackability(codebase) = >~

fEfunctions

10



Results and Discussion
Courier outperformed others significantly, while UW and Cyrus tied

e Metric rewards privilege separation heavily:
— Courier designed to have good privilege separation

— Cyrus contains more code than UW, but scored similarly

e Results can depend on specific numerical weights chosen:
— Cyrus imapd account vs. UW root /unprivileged user
— Imapd almost as privileged as root? UW wins

— Imapd barely more privileged than user? Cyrus wins
e Still needed: better automation, comprehensiveness

e As implemented, attackability metric gives some sensible results

11



Questions?

Toward an Automated Vulnerability Comparison
of Open Source IMAP Servers

Chaos Golubitsky (chaos@glassonion.org)

December 7, 2005

12



