
Toward an Automated Vulnerability Comparison
of Open Source IMAP Servers

Chaos Golubitsky (chaos@glassonion.org)

December 7, 2005

1



Overview

• Motivation

• Attack surfaces

• IMAP server design

• Automated attack surface measurement

• Results

2



Why automated vulnerability comparison

• Goal is to minimize vulnerability of installed software

• But how do we measure future vulnerability?

– Past bugs?

– Reputation?

– Look at the code?

• Useful metric must:

– Be easy to apply

– Give simple and usable results

3



Why analyse IMAP servers

• Protocol for remote authenticated e-mail access

• Three popular servers: UW, Cyrus, Courier

• Prior vulnerability data is inconclusive:

– Approximately 30 IMAP server vulnerabilities recorded

– Almost all are remote API buffer overflows allowing
arbitrary code execution

4



Analysis methodology: attack surfaces

• Methodology for generating metrics

• Two prerequisites for an attack on a system:

– Before attack, attacker must be able to affect the system in
some way

– Attack must increase attacker’s access to the system

• Measure system attackability by counting ways to affect the
system

• What do attack surface elements look like?

5



The attack surface of an IMAP server

6



IMAP design choices which affect attackability

• Permissions and authentication:

– Imapd account (Cyrus) vs. root/user (UW, Courier)

• Subset of functionality which is built in:

– Needs external network listener (UW)

– Custom tcpwrappers workalike (Courier)

– Custom procmail workalike (Cyrus)

• How do we rigorously measure the effects of all these choices?

7



Measuring attackability: using the source

• Metric used: a weighted count of the code functions available
through the IMAP network interface

• Weighting: not all functions are equally accessible

• Access rights:

– Authorization needed to execute the code

– Unauthenticated, anonymous, user, administrator

• Privileges:

– Power the operating system gives to the running code

– nobody, user, imapd, root

8



How to automatically count and classify functions

• Use a code analysis tool to find all reachable functions

• Starting from main(), manually divide code by privilege/access

• Finding privilege/access boundaries:

– Privilege: look for setuid()/setgid() calls

– Access rights: password checks? internal variables?

• Output: set of functions accessible at each privilege/access level

9



From sets of functions to an attackability value

• Assign a weight to each privilege and access level:

– More privileged functions have higher weight:
∗ weight(root) > weight(nobody)

– Functions with more access restrictions have higher weight:
∗ weight(authenticated) > weight(unauthenticated)

• Choose a simple attackability function satisfying:

– Higher privilege leads to higher attackability

– Higher access restriction leads to lower attackability

Attackability(codebase) =
∑

f∈functions

weight(priv(f))

weight(access(f))

10



Results and Discussion

Courier outperformed others significantly, while UW and Cyrus tied

• Metric rewards privilege separation heavily:

– Courier designed to have good privilege separation

– Cyrus contains more code than UW, but scored similarly

• Results can depend on specific numerical weights chosen:

– Cyrus imapd account vs. UW root/unprivileged user

– Imapd almost as privileged as root? UW wins

– Imapd barely more privileged than user? Cyrus wins

• Still needed: better automation, comprehensiveness

• As implemented, attackability metric gives some sensible results

11



Questions?

Toward an Automated Vulnerability Comparison
of Open Source IMAP Servers

Chaos Golubitsky (chaos@glassonion.org)

December 7, 2005

12


